

Angioplastie du tronc commun: Faut il simplifier la procédure au maximum ?

NON !!

Nicolas Amabile, MD, PhD Service de Cardiologie Institut Mutualiste Montsouris, Paris

« Le simple est toujours faux....»

Paul Valery, Mauvaises pensées et autres (1941)

Angioplastie du TCG dans les recommandations ESC sur la revascularisation (2010-2018)

Subset of CAD by anatomy	Favours CABG	Favours PCI
Left main (isolated or IVD, ostium/shaft)	IA	lla B
Left main (isolated or IVD, distal bifurcation)	IA	IIb B
Left main + 2VD or 3VD, SYNTAX score ≤32	IA	lib B
Left main + 2VD or 3VD, SYNTAX score ≥33	IA	IIIB
ESC guidelines Revas	scularisati	on 2010

Recommendations according to extent of CAD	C/	CABG		PCI	
	Class ^a	Level ^b	Class ^a	Level ^b	
Left main disease with a SYNTAX score ≤ 22.	I	В	I	В	
eft main disease with a SYNTAX score 23–32.	I	В	lla	В	
_eft main disease with a SYNTAX score >32.	L.	В	Ш	В	
ESC guidelines Revascularisation 2014					

Recommendations according to extent of CAD		CABG		PCI	
	C lass ^a	Level ^b	C lass ^a	Level ^b	
Left main CAD					
Left main disease with low SYNTAX score (0-22)	T	А	I.	Α	
Left main disease with intermediate. SYNTAX score (23-32)	I.	А	lla	Α	
Left main disease with high SYNTAX score (\geq 33)	I.	А	ш	В	
ESC guidelines Revascularisation 2018					

NEWS NIGHT

Change.org Lancer une pétition Mes pétitions Parcourir les pétitions Nous soutenir Q, Se connecter

Pétition Commentaires Mises à jour

Revise the EACTS/ESC left main coronary artery

News > Medscape Medical News

ESC/EACTS to Review Left Main Revascularization Guidance

Patrice Wendling October 06, 2020

> We are writing to share our concerns with regards to the latest events surrounding the EXCEL trial analysis and its implication for clinical practice guidelines and for the treatment of patients

pétition ou une sutre progresse.

Signez cette pétition

No pes faire apporaître mes nom et commentaire sur cette pétition

Aspects anatomo-pathologiques des anomalies de stent du TCG

N=46 angioplasties du TCG analysées par anatomo-pathologie N=23 anomalies de stent: N=18 thrombose de stent; N= 4 CTO ; N=1 restenose

Hypersensitivity

Mori H et al., Int. Journal of Cardiology 2018, 263 :9-16

Placement des guides

ullet

L'angioplastie du TCG simplifiée au maximum ?

- 1 seul stent (provisional)
- POT / Side / RePOT pas de FKbi
- 1 seul diamètre de ballon pour le POT
- RePOT en position « distale »
- Appréciation des calibres basée sur l'angiographie/ Loi de Finet
- Position des guides basée sur l'appréciation visuelle
- Appréciation des résultats basée sur l'angiographie

Une stratégie à 1 stent ne suffit pas toujours...

Stratégie à 2 stents d'emblée

TCG « complexe »

≻Lésion TCG distal + Sténose SB ≥ 70%
 + longueur lésion SB ≥ 10 mm

ΕT

>Au moins deux des suivants:

- Lésion thrombotique
- Calcifications modérées à sévères
- Angle de bifurcation <45° ou >70°
- Lésions multiples sur branches

DEFINITION II Trial Criteria Zhang JJ et al EHJ (2020) 41, 2523–36 **Conversion vers stratégie à 2 stents**

TCG « qui se complique »

- Occlusion de la SB
- Flux compromis vers la SB
- Sténose résiduelle avec FFR<0.8 dans la SB

Quels sont les diamètres du TCG et de l'IVA ? Quelle est la forme du TCG ? Où sont les LZ/ zones saines ? Faut il faire un POT/ Side/ Re POT ?

Quelles sont les vraies dimensions du TCG ? 2.3.4 Juin 2021

N=254 patients avec analyse IVUS du TCG (pas de lésion significative sous javente) WILEY

IVUS dimensions	All patients (n = 254)
Mean LA mm ² (\pm SD)	15.7 ± 4.7
Mean LD mm (±SD)	$\textbf{4.4} \pm \textbf{0.7}$
Mean plaque burden mm^2 (\pm SD)	$\textbf{9.4} \pm \textbf{3.4}$
Minimal LA mm ² (\pm SD)	12.7 ± 4.6
Mean vessel diameter mm (\pm SD)	$\textbf{5.6} \pm \textbf{0.7}$
Minimal LD mm (±SD)	$\textbf{3.95} \pm \textbf{0.7}$
Length of the LMCA mm (\pm SD)	$\textbf{7.3} \pm \textbf{4.2}$
nTAV mm ² \pm SD	$\textbf{62.1} \pm \textbf{27.9}$
PAV % (±SD)	$\textbf{37.7} \pm \textbf{10.2}$

Abbreviations: nTAV, normalized total atheroma volume; PAV, percent atheroma volume.

40-		т					🔲 Fen
% 30-		_	TŦ	-			Mai
centage ('	T		T,	Ī] _		Average female = male =4.
oued 10-	ΤŦ	T			Ŧ	₽₽	p=0.004
-0 ,	,0 ^{,2,5}	3.54.0	A.0.4.5	A.5.5.0	59.55	-5 ⁵	2

Average lumen diameter (mm)

Diamètre TCG IVUS	Fréquence
Diamètre luminal moyen TCG > 4 mm	71%
Diamètre luminal moyen TCG > 4.5 mm	41%
Diamètre luminal moyen TCG > 5 mm	19 %

Male Average lumen diameter female = 4.2±0.6 mm male =4.5±0.6 mm

Female

Van Zandvoort et al. , CCI 2018, 13 (3): 1-6

Quelles sont les vraies dimensions du TCG ? 2.3.4 Juin 2021

Analyse OCT du diamètre moyen de la zone de référence proximale (TCG) / n=70

Ø moyen LZ > 4.5 mm 19% de patients (n=13)

Diamètre moyen TCG (en mm)

Quelles sont les vraies dimensions du TCG ? 2.3.4 Juin 2021

Impact sur la taille des stents implantés dans le TCG

TABLE 2	Procedural Variables by Imaging for uLMS PCI Performed in England and Wales
in From 20	007 to 2014

	No Imaging (n = 6,208)	Imaging (n = 5,056)	p Value
Microcatheter	112 (2.2)	69 (1.7)	0.130
Rotational atherectomy	644 (12.7)	431 (10.8)	0.008
Laser atherectomy	26 (0.5)	15 (0.4)	0.431
Glycoprotein inhibitor	1,332 (22.4)	1,107 (23.0)	0.423
Largest stent, mm	$\textbf{3.90} \pm \textbf{0.67}$	$\textbf{4.30} \pm \textbf{0.68}$	<0.001
Longest stent, mm	$\textbf{23.3} \pm \textbf{9.4}$	$\textbf{24.1} \pm \textbf{10.2}$	<0.001
Second-generation drug-eluting stent	4,214 (87.4)	3,795 (88.8)	0.874
Stents used	$\textbf{2.08} \pm \textbf{1.38}$	$\textbf{2.14} \pm \textbf{1.46}$	0.040

Values are n (%) or mean \pm SD, unless otherwise indicated.

LAD = left anterior descending artery; PCI = percutaneous coronary intervention; uLMS = unprotected left main stem.

Table 1. Baseline Clinical, Angiographic, and Procedural Characteristics					
Variable	IVUS Guidance (n=756)	Angiography Guidance (n=219)	Р		
Procedural characteristics					
Use of glycoprotein Ilb/Illa inhibitors	47 (6.2)	9 (4.1)	0.24		
Use of intra-aortic balloon pump	28 (3.7)	4 (1.8)	0.17		
Direct stenting	155 (20.5)	36 (16.4)	0.18		
No. stents implanted at left main	1.2±0.4	1.2±0.5	0.66		
Total stent length at left main	27.3±20.9	30.1±20.7	0.08		
Average stent diameter at left main	$3.6{\pm}0.5$	3.4±0.4	0.002		
Bifurcation treatment					
Single stenting	226 (62.1)	71 (61.7)	0.95		
Complex stenting (\geq 2 stents)	138 (37.9)	44 (38.3)			
Data are mean±SD or N (%).					

Kinnaird T. et al. , JACC CV Intv 2020, 13 (3): 346-57

Park et al., Circ CV Intv 2009, 2 (3): 166-77

Quelle est la vraie forme du TCG ?

Non cylindrique

Biconcave: 54%

Tapered: 21%

Combined: 14 %

Funnel: 10 %

Plus de 33% des patients avec un ostium de TCG plus large que la distalité

Zeina AR et al. Coronary Artery Disease. 2007;18 (6):477-82

Non circulaire

Pmin Dmax Dmin Dmax Excer	: 3.6 mm : 5.5 mm : 4.5 mm htricité : D _{max} /D _{min} =1.5		
Dimensions LZ proximale (OCT)	N=70		
Diamètre luminal minimal , mm	3.6 +/- 0.6		
Diamètre luminal maximal, mm	4.5 +/- 0.7 mm		
Diamètre luminal moyen, mm	4.0 +/- 0.6 mm		
Indice d'excentricité	1.3 +/-0.2		
87% des patients avec indice d'excentricité > 1.1 36% des patients avec indice d'excentricité > 1.3			

Amabile N et al. Eurointervention 2021

Où implanter son stent ? Landing zone ?

TCG

MLA: 2.6 mm²

Le POT seul previent-il la malapposition ? 2.3.4 Juin 2021

Amabile N et al. Eurointervention 2021

Catheter Cardiovasc Interv. 2020;96:31-39. Catheter Cardiovasc Interv 2020;96:31-39. Re-POT impacte t il la surface ostiale de la SB?

Andreasen LN et al. *Catheter Cardiovasc Interv. 2020;96:31–39*

2.3.4 Juin 2021

- Stratégie à 1 stent provisionnelle
- Stent XIENCE 4.0 x 15 mm / 18 atm
- POT 5.0 x 8 mm
- Side dilatation 3.5 x 12 mm
- Re POT 5.0 x 8 mm

Stent area: 16.1 mm² Malapposition distance: 860 μm Mean Ø: 5.1 mm / Max Diam Ø : 5.5 mm

Impact de l'IVUS sur la stratégie d'angioplastie du TCG dans EXCEL ?

Utilisation de l'IVUS dans EXCEL : 77% des ATC (n=722/948 pts)

Maehara A et al. TCT 2016

Impact de l'OCT sur la stratégie d'angioplastie?

Repositionnement du guide dans la bonne cellule après run#2

Optimisation de l'ATC (Post dilation, etc..) après run#3

26 %

15

Amabile N et al. Eurointervention 2021

Pourquoi (s'embêter) ?

BCIS database registry

N=11257 patients avec ATC du TCG entre 2007-2014

	No Imaging $(n = 6,208)$	Imaging (n = 5,056)	p Value
Immediate procedural outcomes			
Successful lesions	$\textbf{1.97} \pm \textbf{1.04}$	$\textbf{2.01} \pm \textbf{1.06}$	0.007
Residual diseased vessels	$\textbf{0.59} \pm \textbf{0.85}$	$\textbf{0.38} \pm \textbf{0.75}$	< 0.001
Left main PCI success	5,530 (97.2)	4,530 (98.0)	0.017
Coronary perforation	57 (1.0)	39 (0.8)	0.433
Tamponade	18 (0.3)	6 (0.1)	0.074
Coronary dissection	334 (5.9)	240 (5.1)	0.112
Major side branch loss	70 (1.2)	45 (0.9)	0.229
Slow flow	77 (1.4)	33 (0.7)	0.002
Coronary complications	0.10 ± 0.33	$\textbf{0.07} \pm \textbf{0.29}$	0.002
Any coronary complication	493 (8.7)	330 (7.0)	0.003
Clinical outcomes			
Transfusion	45 (0.8)	24 (0.5)	0.104
Emergency CABG	20 (0.3)	4 (0.08)	0.009
Periprocedural MI	59 (1.0)	40 (0.8)	0.388
In-hospital major bleed	85 (1.4)	44 (0.9)	0.014
In-hospital death	280 (4.6)	72 (1.5)	<0.001
In-hospital MACCE	340 (5.7)	112 (2.3)	< 0.001
Mortality at 30 days	366 (6.6)	122 (2.9)	< 0.001
Mortality at 12 months	790 (15.5)	335 (9.0)	<0.001

APPA

2.3.4 Juin 2021

Kinnaird T. et al. , JACC CV Intv 2020, 13 (3): 346-57

NOBLE IVUS substudy

Ladwiniec et al., EuroIntervention 2020;16:201-209

O Outcomes of predefined optimisation criteria for intravascular TaVascular ul ultrasound guidance of left main stenting

Protocole IVUS standardisé (prospectif) vs IVUS non protocolisé (propensité apparié) vs angio (propensité apparié)

De la Torre Hernández JM et al. EuroIntervention. 2020;16:210-217

« Le simple est toujours faux. Ce qui ne l'est pas est inutilisable »

Paul Valery, Mauvaises pensées et autres (1941)

Conclusions

• Objectif de l'ATC du TCG : geste parfait !

- L'amélioration des résultats à moyen/ long terme reste toujours un défi.
- Le geste le plus simple n'est pas garant d'efficacité et d'absence de complication.
- Stratégie provisionnelle à 1 stent reste la 1^{ère} option

- Rôle de l'imagerie : essentiel !
- Utiliser l'IVUS ou l'OCT dès que possible (Si TCG ostial: IVUS)
- Imagerie indispensable si situation à risque d'ATC complexe:
 - ATC à 2 stents
 - Calcifications
 - Discongruence de calibre
 - Anatomie « tapered »
 - Diabétique

L'angiographie est un outil imparfait pour le TCG

	Visual	FFR measurement results			
	Assessment	ssment FFR > 0.80 FFR \leq 0.80		R ≤ 0.80	
		N	=23	N=28	
Reviewer	Not sign.	14	61%	10	36%
Δ	Sign	4	17%	10	36%
~	Unsure	5	22%	8	28%
Reviewer	Not sign.	16	70%	15	54%
В	Sign	2	8%	12	43%
	Unsure	5	22%	1	3%
Reviewer	Not sign.	14	61%	17	61%
ſ	Sign	9	39%	11	39%
Ľ	Unsure	0	0%	0	0%
Reviewer	Not sign.	10	44%	14	50%
D	Sign	7	30%	9	32%
	Unsure	6	26%	5	18%

N=51 lésions du TCG revues par 4 opérateurs expérimentés
Appréciation visuelle concordante dans 51% des cas

Sensibilité:38% & Spécificité:58%

Lindstaedt M et al., Int J Card 120 (2):254-61

•

•

•

•

LEMON study

Amabile N et al. Eurointervention 2021

3-Year Outcomes of the ULTIMATE Trial Comparing Intravascular Ultrasound Versus Angiography-Guided Drug-Eluting Stent Implantation

	IVUS guidance	Angiography guidan	ice		
Subgroup	Events/ total patients	Events/ total patient	ts Hazard Ratio (95%	CI)	p for interactio
All patients	47/724	76/724	0.60 (0.42-0.87)	-	
Age					0.59
<75 yrs	34/557	54/573	0.64 (0.41-0.98)		
≥75 yrs	13/167	22/151	0.51 (0.26-1.02)		
Sex					0.49
Male	38/535	57/530	0.65 (0.43-0.97)		
Female	9/189	19/194	0.47 (0.21-1.05)		
Diabetes mellitus					0.54
No	32/507	47/498	0.66 (0.42-1.03)		
Yes	15/217	29/226	0.52 (0.28-0.96)		
Acute coronary syndrome					0.44
No	4/155	10/157	0.39 (0.12-1.26)		
Yes	43/569	66/567	0.64 (0.43-0.93)		
Chronic kidney disease					0.47
No	32/543	49/551	0.65 (0.42~1.02)		
Yes	15/180	27/169	0.49 (0.26-0.93)		
Multi-vessel disease				1.6.1	0.46
No	19/343	23/310	0.74 (0.40-1.36)		
Yes	28/381	53/414	0.55 (0.35-0.88)		
ACC/AHA classification					0.59
A/B1	5/219	10/203	0.46 (0.16-1.36)		
B2/C	42/505	66/521	0.63 (0.43-0.93)		
Chronic total occlusion					0.89
No	38/641	60/635	0.61 (0.41-0.92)		
Yes	9/83	16/89	0.58 (0.26-1.31)		
Bifurcation lesions					0.27
No	31/509	38/469	0.74 (0.46-1.19)		3353 W V
Yes	16/215	38/255	0.48 (0.27-0.87)		
Moderate to severe calcification					0.47
No	29/517	43/521	0.67 (0.42-1.07)		
Yes	18/207	33/203	0.51 (0.29-0.91)		
Lesion length					0.94
<25 mm	16/290	27/293	0.59 (0.32-1.10)		
≥25 mm	31/434	49/431	0.61 (0.39-0.96)		
				0.1 0.5 1.0 1.5	2.0
				IVUS better Ang	iography better

2.3.4 Juin 2021

Gao XF et al.J Am Coll Cardiol Intv. 2021 Feb, 14 (3) 247–257

Le Re-POT modifie-t-il l'architecture du stent?

Andreasen LN et al. *Catheter Cardiovasc Interv. 2020;96:31–39*

2.3.4 Juin 2021