

Physiologie et Imagerie: La réconciliation

Eric Van Belle,

Lille University Hospital Heart & Lung Institute

Institut national de la santé et de la recherche médicale

EACTS Functional testing and intravascular imaging for lesion assessment

Recommendations	Class	Level
When evidence of ischaemia is not available, FFR or iwFR are recommended to assess the haemodynamic relevance of intermediate-grade stenosis.	I	Α

Editorial

Routine Pressure Wire Assessment at Time of Diagnostic Angiography Is It Ready for Prime Time?

Eric Van Belle, MD, PhD; Gilles Rioufol, MD, PhD; Patrick Dupouy, MD

Editorial

Routine Fractional Flow Reserve Combined to Diagnostic Coronary Angiography as a One-Stop Procedure Episode 3

Eric Van Belle, MD, PhD; Patrick Dupouy, MD; Gilles Rioufol, MD, PhD

Van Belle et al. Circ Cardiovasc Interv 2014 Van Belle et al. Circ Cardiovasc Interv 2016

Outcome Impact of Coronary Revascularization Strategy Reclassification With Fractional Flow Reserve at Time of Diagnostic Angiography

Insights From a Large French Multicenter Fractional Flow Reserve Registry

Eric Van Belle, MD, PhD; Gilles Rioufol, MD, PhD; Christophe Pouillot, MD;

Change of the Revascularization strategy according to the results of non-invasive tests

N=1,075

N=415

N=47 N=96

N=517

Impact of Routine Invasive Physiology at Time of Angiography in Patients With Multivessel Coronary Artery Disease on Reclassification of Revascularization Strategy

Results From the DEFINE REAL Study

Eric Van Belle, MD, PHD,^a Robert Gil, MD, PHD,^b Volker Klauss, MD,^c Mohammed Balghith, MD,^d Martijn Meuwissen, MD, PHD,^e Jérôme Clerc, MD,^f Bernhard Witzenbichler, MD,^g Miha Cercek, MD,^h Marios Vlachojannis, MD,ⁱ Irene Lang, MD,^j Philippe Commeau, MD,^k Flavien Vincent, MD,^a Luca Testa, MD, PHD,¹ Wojciech Wasek, MD, PHD,^m Nicolas Debry, MD,^a Stephan Kische, MD, PHD,ⁿ Gabriele Gabrielli, MD,^o Gennaro Sardella. MD. PHD^p

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 11, NO. 4, 2

```
FEBRUARY 26, 2018:354-65
```

Van Belle et al. Routine Invasive Physiology in MVD

Reclassification according to the number of vessels investigated

Reclassification according to the use of iFR/FFR

P=0.0001

Reclassification according to the results of non-invasive tests

Stress test diagnosis in stable patients

Procedural management change by physiology

Van Belle et al. Circ Cardiovasc Interv 2016

TABLE 1 Studies Evaluating Reclassification of the Treatment Strategy by Routine Coronary Pressure Assessment and Its Impact on Revascularization Rates

Study	Number of Patients	Target Population	Patients Considered for Revascularization Based on Angiography†	Reclassification Rate	Gain/Loss in Patients Undergoing Revascularization Following Pressure Wire	Number of Patients With 1-Year Clinical Outcome
Episode 1: R3F	1,075	Mostly stable	488 (45%)	43%	-32 (-6%)	1,075
Episode 2: RIPCORD	200	Stable	113 (56%)	27%	-3 (-1%)	0
Episode 3: POST-IT	918	Mostly stable	357 (39%)	44.2%	+123 (+34%)‡	918
Episode 4: FAMOUS-NSTEMI	176	ACS	158 (90%)	22%	-22 (-12%)	176
Episode 5: PRIME-FFR	533*	ACS	206 *(39%)	38%	+42* (+24%)	533*
Episode 6: DEFINE-REAL	484	MVD	346 (71%)	45%	-39 (-11%)	0
Episode 7: iFR-SWEDEHEART	2,013	Mostly stable Including 722 with MVD	1,282 (64%) 648 (89%)	40% 49%	-177 (-14%) -64 (-9%)	2,013
Total	4,866*		2,744 (56%)		-150 (-5%)	4,182*

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 11, NO. 20, 2018

Van Belle et al.

Routine Pressure Wire:

From Deferral to Reclassification

OCTOBER 22, 2018:2095-8

Role of iFR in serial lesions

Co-registration of imaging and physiology tools

iFR Co-Registration

IVUS Co-Registration

Enhanced Angiography

OCT / OFDI Co-Registration

Cas clinique N°1

- Patiente de 76 ans.
- Antécédent de coronaropathie stentée sur l'IVA en 2011.
- Hospitalisée pour angor instable dans un Centre partenaire
- ETT : FEVG conservée
- Coronarographie : Découverte d'une sténose du TC distale
- Adressée pour angioplastie TC distale.

iFR en distalité

iFR Roadmap

Perte de charge diffuse sur TC distale et RIS IVA Moyenne :

Prédilatation au ballon NC

 Décision angioplastie par long stent TC-IVA en overlap sur stent IVA moyenne

> Stent actif Resolute ONYX 3,5*38mm TC-IVA en overlap

> > Inflaté à 12 Bar

Optimisation

Résultat final

Co-Registration Wizard: Roadmap Selection

Perform an Angiogram as follows:

- Make sure GC and GW tip are visible
- Avoid changing the zoom and moving the table or the C-Arm until pullback is completed
- Click Next when ready

Focal stenosis

Diffuse disease

Combining imaging and local detection of ischemia

For the best possible decision

Conclusions

- ✓ Invasive detection of ischemia by FFR/iFR (IP) has become the gold standard for the evaluation of epicardial vessel related ischemia.
- ✓ PCI guided by local invasive detection of ischemia is associated with an improved clinical outcome (FAME and FAME 2)
- ✓ Routine use of FFR/iFR during diagnostic angiography is associated with change of the treatment decision (Reclassification) in > 40%
- Combining angiography with iFR pullback to perform a coronary physiology mapping (diagnostic) and virtual PCI (therapeutic) is a major step forward at the time Coronary-CT and FFR-CT
- ✓ 100% of patient should be discharged from coronary angiography with a clear plan of revascularization (non-invasive test before or FFR/iFR during angio)

Thank you for your attention!

Pr Eric VANBELLE MD, PhD, FESC, FACC Institut Coeur et Poumon - CHU Lille, France University of Lille - School Of Medicine Henri Warembourg

Coordonner l'imagerie et la physiologie

Pour la meilleure decision possible

Background

- Results from national studies have shown that FFR evaluation during diagnostic angiography impacts the coronary revascularization strategy on a range of 26 to 44% of patients.
- There is limited data on utilization of coronary physiology and reclassification in Multi-Vessel Disease (MVD) population

Van Belle E, et. al. Outcome impact of coronary revascularization strategy reclassification with FFR at time of diagnostic angiography: insights from a large French multicenter FFR registry. Circulation. Published online 19 Nov 2013 Curzen N, et al. RIPCORD: Does Routine Pressure Wire Assessment Influence Management Strategy at Coronary Angiography for Diagnosis of Chest Pain? Circ Cardiovasc Interv.2014;7:248-255. Baptista SB, et al. POST.IT: Presented at late breaking trial at PCR 2014. Market Model data on file at Volcano Corporation.

Objectives

As systematic FFR multi-vessel assessment is time consuming and therefore rarely performed in routine practice, the iFR[®] index may help to simplify the physiology assessment of MVD patient population.

The DEFINE REAL objectives are:

- To assess prospectively the impact of physiology on revascularization strategy of MVD patients compared to diagnostic angiogram only.
- To analyze how FFR and iFR[®] are used in routine practice during physiology evaluation of MVD patients.

Methodology

Patient with Lesion DS% >40 in 2 or 3 different major vessels Patient Eligible should be for Physiology Evaluation Initial Treatment Strategy based on Angiography (and clinical information) CABG, PCI or OMT Final treatment strategy based on **Physiology** CABG, PCI or OMT \rightarrow Change of Treatment Strategy based on the Difference

between Initial and Final Treatment:

- → At Vessel level
- → At Patient level

Patient Demographics

Patient Demographics	n = 484
Gender (male)	80%
Age (mean)	66.7 yr
Previous MI	36%
ACS	17.8%
Diabetes	26.7%
Normal LVEF	62.8.%
Non-invasive stress test	26.7%

Stress Test in Stable Patients

Baseline Characteristics

Patients population	484	
 Patient with LM involved 	9.1%	
Vessels diseased	1107	3VD
 Average per patient 	2.29	
Vessels assessed by physiology	830 (75%)	
 Average per patient 	1.71	

Lesion severity Median DS 60%

Results of FFR/iFR[®]

Median FFR Value: 0,85 n = 608 Median iFR[®] Value: 0,92

n = 793

Baseline Characteristics

In this MVD population, 75% of diseased vessels were interrogated by Physiology

Initial Treatment Strategy By Angiography

Physiology Approaches

Changes of Treatment Strategy

At Vessel Level, treatment decision was changed after physiology assessment for 30.0% of Vessels

Initial Treatment Strategy

Changes of Treatment Strategy

At Patient Level (Macro Strategy), treatment decision changed after physiology assessment **for 27%** of Patients

Changes of Treatment Strategy

Reclassification of the revascularization strategy at vessel level (n=828) is 29.6%

Reclassification of the revascularization strategy at patient level (n=484) is 26,9%

34,6%

С

В

Extra time for Physiology in >1 vessel

2 Vessels Interrogated

Conclusions

✓ Routine use of invasive physiology in patients with MVD, on-going UA/ NSTEMI or recent ACS is associated with a high rate of reclassification of management strategy (>30%).

- ✓ In ACS, Integrating FFR on clinical decision making and pursuing a treatment strategy divergent from angiography (including revascularization deferral) was as safe as in stable CAD patients.
- ✓ In MVD patient, implementation of iFR is safe and allows evaluation of more vessels which in turn leased to a higher of reclassification.

Perspective

- PRIME-FFR and DEFINE REAL reinforces the observation made in previous national prospective physiology studies;
- They extends those previous findings to ACS and MVD patients and also to iFR[®] use;
- DEFINE FLAIR, Swedeheart, and Syntax II will provide clinical outcome data of the use of routine physiology in MVD patients.

A prospective, observational, European, multi-center registry, collecting REAL-life information on the utilization of instantaneous wave-free ratio[™] (iFR[®]) in the multivessel disease patients population

Prof. Eric Van Belle on behalf of the DEFINE REAL Investigators

Background

- Results from national studies have shown that FFR evaluation during diagnostic angiography impacts the coronary revascularization strategy on a range of 26 to 44% of patients.
- There is limited data on utilization of coronary physiology and reclassification in Multi-Vessel Disease (MVD) population

Van Belle E, et. al. Outcome impact of coronary revascularization strategy reclassification with FFR at time of diagnostic angiography: insights from a large French multicenter FFR registry. Circulation. Published online 19 Nov 2013 Curzen N, et al. RIPCORD: Does Routine Pressure Wire Assessment Influence Management Strategy at Coronary Angiography for Diagnosis of Chest Pain? Circ Cardiovasc Interv.2014;7:248-255. Baptista SB, et al. POST.IT: Presented at late breaking trial at PCR 2014. Market Model data on file at Volcano Corporation.

Objectives

As systematic FFR multi-vessel assessment is time consuming and therefore rarely performed in routine practice, the iFR[®] index may help to simplify the physiology assessment of MVD patient population.

The DEFINE REAL objectives are:

- To assess prospectively the impact of physiology on revascularization strategy of MVD patients compared to diagnostic angiogram only.
- To analyze how FFR and iFR[®] are used in routine practice during physiology evaluation of MVD patients.

Methodology

Def ne real

Patient with Lesion DS% >40 in 2 or 3 different major vessels Patient Eligible should be for Physiology Evaluation

Initial Treatment Strategy based on Angiography (and clinical information) → CABG, PCI or OMT

Final treatment strategy based on Physiology

→ CABG, PCI or OMT

Change of Treatment Strategy based on the Difference between Initial and Final Treatment:

- → At Vessel level
- → At Patient level

Patient Demographics	n = 484
Gender (male)	80%
Age (mean)	66.7 yr
Previous MI	36%
ACS	17.8%
Diabetes	26.7%
Normal LVEF	62.8.%
Non-invasive stress test	26.7%

Stress Test in Stable Patients

Baseline Characteristics

Patients population	484	
 Patient with LM involved 	9.1%	
Vessels diseased	1107	3VD
 Average per patient 	2.29	
Vessels assessed by physiology	830 (75%)	
 Average per patient 	1.71	

Lesion severity Median DS 60%

Results of FFR/iFR®

Median FFR Value: 0,85 n = 608 Median iFR® Value: 0,92

n = 793

Baseline Characteristics

DEF NE REAL

In this MVD population, 75% of diseased vessels were interrogated by Physiology

Initial Treatment Strategy By Angiography

At Vessel Level, treatment decision was changed after physiology assessment for **30.0% of Vessels**

At Patient Level (Macro Strategy), treatment decision changed after physiology assessment for 27% of Patients

Reclassification of the revascularization strategy at vessel level (n=828) is 29.6%

Vessels interrogated in MVD patients

iFR® versus FFR diven physiology assessement in **MVD** patients

С

Extra time for Physiology in >1 vessel

2 Vessels Interrogated

Conclusions

✓ Routine use of invasive physiology in patients with MVD, on-going UA/ NSTEMI or recent ACS is associated with a high rate of reclassification of management strategy (>30%).

- ✓ In ACS, Integrating FFR on clinical decision making and pursuing a treatment strategy divergent from angiography (including revascularization deferral) was as safe as in stable CAD patients.
- ✓ In MVD patient, implementation of iFR is safe and allows evaluation of more vessels which in turn leased to a higher of reclassification.

Perspective

- PRIME-FFR and DEFINE REAL reinforces the observation made in previous national prospective physiology studies;
- They extends those previous findings to ACS and MVD patients and also to iFR[®] use;
- DEFINE FLAIR, Swedeheart, and Syntax II will provide clinical outcome data of the use of routine physiology in MVD patients.

PCR

The POST-IT & R3F Investigators

POST-IT (Portugal)

Sérgio Bravo Baptista, MD (Amadora) Luís Raposo, MD (Lisbon) Lino Santos, MD (V N Gaia) Ruben Ramos, MD (Lisbon) Rita Calé, MD (Almada) Elisabete Jorge, MD (Coimbra) Carina Machado, MD (Ponta Delgada) Marco Costa, MD (Coimbra) Eduardo Oliveira, MD (Lisbon) João Costa, MD (Braga) João Pipa, MD (Viseu) Nuno Fonseca, MD (Setúbal) Jorge Guardado, MD (Leiria) Bruno Silva, MD (Funchal) Maria João Sousa, MD (Porto) João Carlos Silva, MD (Porto) Alberto Rodrigues, MD (Penafiel) Luís Seca, MD (Vila Real) Renato Fernandes, MD (Évora)

R3F (France)

Eric Van Belle, MD, PhD (Lille) Patrick Dupouy, MD (Antony) Gilles Rioufol, MD, PhD (Lyon) Christophe Pouillot, MD (St Denis, La Réunion) Thomas Cuisset, MD, PhD (Marseille) Karim Bougrini, MD (St Denis, La Réunion) Emmanuel Teiger, MD, PhD (Créteil) Stéphane Champagne, MD (Créteil) Loic Belle, MD (Annecy) Didier Barreau, MD (Toulon) Michel Hanssen, MD (Haguenau) Cyril Besnard, MD (Lyon) lean Dallongeville, MD, PhD (Lille) Georgios Sideris, MD (Paris) Christophe Bretelle, MD (Valence) Nicolas Lhoest, MD (Colmar) Pierre Barnay, MD (Avignon) Raphael Dauphin (Lyon) Laurent Leborgne, MD, PhD (Amiens) Flavien Vincent (Lille)