Thérapie Cellulaire de l'Insuffisance Cardiaque

APPAC *Biarritz, 10 Juin 2015*

Ph. Menasché Cardiovascular Surgery Hôpital Européen Georges Pompidou Paris, France

Institut national de la santé et de la recherche médicale

The First Decade of Stem Cell Clinical Trials for Heart Failure

Skeletal Myoblasts

Bone Marrow-Derived Cells

These cells have yielded limited, if any, functional benefit
However, analysis of trial outcomes has allowed to draw

important lessons

Stem Cells for Heart Failure

Rationale

- Cardiac-committed cells seem to be the most functionally effective
- The epicardial patch-based delivery of cells has distinct advantages over multiple intramyocardial injections
- The common discrepancy between a sustained functional benefit and the lack of permanent cell engraftment suggests a paracrine effect which rationalizes the use of allogeneic cells provided their survival is extended enough to allow them to exert these paracrine effects

Cardiac-Committed Cells : Where Can They Come From ? : Pluripotent Stem Cells

Fairchild Nature Reviews Immunology 2010;10:868-75.

Stem Cells for Heart Failure

Rationale

- Cardiac-committed cells seem to be the most functionally effective
- The epicardial patch-based delivery of cells has distinct advantages over multiple intramyocardial injections
- The common discrepancy between a sustained functional benefit and the lack of permanent cell engraftment suggests a paracrine effect which rationalizes the use of allogeneic cells provided their survival is extended enough to allow them to exert these paracrine effects

Cardiac Patches

Advantages

- To improve cell retention
- To provide a template enhancing cell survival, proliferation, differentiation and migration
- To strengthen the infarcted myocardium
- To serve as a platform for drug/factor delivery

Comparative Assessment of Myoblast Delivery Methods

Rat model of permanent coronary occlusion; Myoblast delivery 2 weeks post MI; Echo assessment of LV function 1 mo. postTx

Baseline EF (%)

End point EF (% change)

Stem Cells for Heart Failure

Rationale

- Cardiac-committed cells seem to be the most functionally effective
- The epicardial patch-based delivery of cells has distinct advantages over multiple intramyocardial injections
- The common discrepancy between a sustained functional benefit and the lack of permanent cell engraftment suggests a paracrine effect which rationalizes the use of allogeneic cells provided their survival is extended enough to allow them to exert these paracrine effects

Stem Cells for Heart Failure

Roadmap of Preclinical Studies

In vitro studies

Optimal culture conditions

Cell characterization (genotype, phenotype, epigenetic status)

In vivo studies

>300 rats Cardiac differentiation Assessment of scaffolds Functional outcome Lack of teratoma

54 ID mice Lack of teratoma

32 nonhuman primates Cardiac differentiation

4 sheep Surgical training

Lack of teratoma

Steps

- Selection of the cell line
- Scale-up of pluripotent ESC and set-up of banks
- Cardiac specification
- Purification
- Safety testing

Beating I6 ES-Derived Embryoid Bodies

Steps

- Selection of the cell line
- Scale-up of pluripotent ESC and set-up of banks
- Cardiac specification
- Purification
- Safety testing

Pre-late banking (P44)

Steps

- Selection of the cell line
- Scale-up of pluripotent ESC and set-up of banks
- Cardiac specification
- Purification
- Safety testing

Molecular Regulators of Cardiac Differentiation

4-day exposure to BMP-2 (10 ng/mL) and a FGF inhibitor (SU-5402, 1 μ M) in insulin-free α -MEM + 2%B27 medium

Inductos 12 mg

Kit pour implant/Kit zur Implantation/ Kit voor implantaal/Kit per implanto dibotermine alpha/Dibotermin alfa/dibotermine alfa/ dibotermina alfa

FR

Chaque kit contient 12 mg de dibotermine alpha. Soit, après reconstitution, InductOs contient 1,5 mg/ml de dibotermine alpha.

Poudre : saccharose, glycine, acide glutamique, chlorure de sodium, hydroxyde de sodium et polysorbate 80 Solvant: eau pour préparations injectables Matrice : collagène bovin de type I

Kit pour implantation et à usage unique seulement. Avant utilisation, lire le Résumé des Caractéristiques du Produit joint.

DE

Jedes Kit enthält 12 mg Dibotermin alfa. Nach der Rekonstitution enthält InductOs 1,5 mg/ml Dibotermin alfa.

Pulver: Sucrose, Glycin, Glutaminsäure, Natriumchlorid, Natriumhydroxid und Polysorbat 80 Lösungsmittel: Wasser für Injektionszwecke Matrix: Rinderkollagen Typ I

Kit zur Implantation und nur zum einmaligen Gebrauch. Vor der Anwendung Packungsbeilage sorgfältig durchlesen.

NL

Elke kit bevat 12 mg dibotermine alfa. Na reconstitutie bevat InductOs 1,5 mg/ml dibotermine alfa.

Poeder: sucrose, glycine, glutaminezuur, natriumchloride, natriumhydroxide en polysorbaat 80. Oplosmiddel: water voor injectie Matrix: rundercollageen type I

Kit voor implantaat uitsluitend voor eenmalig gebruik. Lees voorafgaand aan het gebruik de bijgevoegde samenvatting van de productkenmerken.

IT

Ogni Kit contiene 12 mg di dibotermina alfa. Quando ricostituito, InductOs contiene 1,5 mg/ml di dibotermina alfa.

Polvere: saccarosio, glicina, acido glutammico, sodio cloruro, sodio idrossido e polisorbato 80 Solvente: acqua per preparazioni iniettabili Matrice: collagene bovino di Tipo I

Kit per impianto da utilizzare una sola volta. Prima dell'uso leggere il Riassunto delle Caratteristiche del Prodotto incluso.

> Medtronic BioPharma

Alexander & Bruneau, Trends in Molecular Medicine 2010;16:426-34.

Steps

- Selection of the cell line
- Scale-up of pluripotent ESC and set-up of banks
- Cardiac specification
- Purification
- Safety testing

Immunomagnetic Cell Sorting

SSEA-1
Is a surface marker suitable for flow cytometry and accessible to magnetic beads
Labels cells which have lost pluripotency
Can be recognized by commercially available antibodies

Model of Differentiation of Human Pluripotent Stem Cells via Sequential Progenitors to Cardiomyocytes

Mummery et al. Circ Research 2012;111:344-58.

Heat Map of the Expression of Genes in Pluripotent I6 ESC vs SSEA-1⁺ Committed Progenitors : Mesodermal/Cardiac Genes

Immunostaining-Based Assessment of Cell Identity

Expression of *Isl-1* immediately after sorting (cytospin)

x20

Steps

- Selection of the cell line
- Scale-up of pluripotent ESC and set-up of banks
- Cardiac specification
- Purification
- Safety testing

hESC Translational Issues : Safety Testing

Evolution of Tested Scaffolds

Cardiac Patches

Advantages of Fibrin

- Biocompatibility
- Tunability of mechanical properties
- Angiogeneic potential
- Marketed approval for human use

—20µm

Tx of ESC-Derived SSEA-1⁺ Progenitor Cells Embedded Into a Fibrin Scaffold

Bellamy et al. J Heart Lung Transplant (on-line, November 7, 2014)

Imaging of SSEA-1⁺ Progenitor Cells Embedded Into a Fibrin Scaffold Following Epicardial Scaffold Delivery Onto an Infarcted Rat Heart

48-Hour Data

Upper panel : 150µm (HE); 40µm (Lamin A/C, Merge)
 Lower panel: 20µm

Stem Cells for Heart Failure

Enhancement of Graft Survival

Provision of a Trophic Support:

The pericardium as a natural bioreactor

Delayed Rejection:

Short-term immunosuppression

Pericardial flap allowing to create the Kangaroo pouch

Immunosuppression Regimen

- Ciclosporine (1mg/kg/day with target trough levels of 100-150 ng/ mL)
- Mycophenolate mofetyl (2g/day for 1 month, then1g/day)
- 2-month treatment, currently shortened to 1 month

Cell-loaded fibrin patch overlying the epicardium

ESCORT

Embryonic Stem Cell fOr Regenerative Therapy (NCT02057900)

Inclusion Criteria

- Age between 18 and 81
- Severe LV dysfunction (LVEF $\leq 35\%$)
- History of MI (> 6 mo.)
- Disabling functional limitation (angina and/or NYHA Class III/IV heart failure) despite optimal medical therapy
- Previous implantation of an ICD ± CRT
- Indication for a conventional coronary and/or valve procedure
- Contra-indication to heart transplantation

ESCORT

End Points

- Primary : Safety
- ✓ Intraoperative : arrhythmias, bleeding
- ✓ Postoperative (early : 1 year) : MACE, tumour
- ✓ Postoperative (late : 5 years) : tumour
- Secondary :
- ✤Feasibility
- Efficacy :
- ✓ Local and regional LV function
- ✓ Viability of the grafted area
- ✓ Functional status
- ✓ MACE

ESCORT Trial : Flow Chart

End point	Pre (-1M)	T0	1W	2W	3W	M1	M3	M6	M12
Clinical/Biol/Radio	Х					X	X	Χ	X
VO ₂ max	X								X
Walking test (6min)	X								X
Echo	X					X	X	X	X
ICD	X			X		X	X	X	X
Holter EKG 24 h	X								X
Nuclear angiogram	Х								X
PET scan (oncology)	Х							X	
Bodyscan	Х								Х
Allo-immunization	X						Χ	Χ	±Χ
ELISPOT InFγ*	X			X		X	X	X	X

* Cell responses to EBV and CMV viruses

ESCORT Trial

Case Report

- 68-year old insulin-dependent diabetic woman
- History of infero-lateral myocardial infarction
- Clinical symptoms of heart failure (NYHA Class III)
- LVEF: 26%
- Coronary angiogram : critical left main stenosis and Cx complete occlusion

ESCORT Trial

Release Criteria

- Cell number : 4 x 10⁶
- Specification rate : 64%
- Viability rate : 96.1%
- Purity rate (%SSEA-1⁺ cells) : 99%
- ✓ *Nanog* (SSEA-1⁺/I6): 0.009
- ✓ *Sox 2* (SSEA-1⁺/I6): 0.036

✓ *Isl-1* (SSEA-1⁺/I6): 159

Markers of pluripotency

Marker of heart fields

Implantation of a fibrin patch loaded with human embryonic stem cell-derived cardiac progenitor cells

October 21, 2014 Dept of Cardiovascular Surgery Hôpital Européen Georges Pompidou

ESCORT Trial

Early Postoperative Course

- Uneventful weaning from CPB
 Early postoperative extubation (2 hours and 30 minutes)
- Stable hemodynamics under a short-duration moderate/minimal inotropic support
- No bleeding (370 mL/24 first PO hours)
- Peak TnI level : 3.8 ng/mL

ESCORT Trial

6-month Follow-Up : Safety Data Absence of adverse events

- No arrhythmias (interrogation of ICD)
- No immunosuppressive drug-related complications
- No new morphological cardiac abnormality
- Partial (1 antigen) alloimmunization to the grafted cells

¹⁸FDG Pet Scan

Functional Status

Echo 2D	Pre-op	M2	M3	M6
LVEDV (mL)	161	160	134	135
LVESV (mL)	117	117	85	84
LVEF (%)	26	27	36	38
NYHA Class	III	II	II	Ι
6mn WT(m)	350		467	

LV Volume/Function (*Apical 4-chamber view*)

Pre-op

6 months

1 month

ESCORT Trial

Areas of Further Research/Improvement

Feeder-free cultures

Differentiation towards a more mature cardiac phenotype ?

 Negative type of immunomagnetic selection or microfluidics-based method

- More « biomimetic » patch material
- Expeditious assessment of lot release criteria

Exclusive use of cell-derived factors/microvesicles?

Those Who Did It : INSERM U 970 (Paris Research Cardiovascular Center)

André Tomescot

Etienne Puymirat

Susanne Proksch

David Kalfa

. .

Hany Nematalla

0

Damélys Calderon

Agnès Maurel

Chantal Mandet

Hadhami Hamdi

Joevin Sourdon

Laetitia Pidial

Mathieu

Registration Prince

Aurélie Chaudeurge

Bertrand Léobon

Patrick Bruneval

Va lérie Bellamy

Kasra Azamoush

Hôpital Saint-Louig

Centre Hojpitalo-Universitaire et de Recherche

Department of Cell and Tissue Biotherapies

Jérôme Larghero

Valérie Vanneaux

Laboratory of Histocompatibility

Caroline Suberbielle

Hópital Européen Georges Pompidou

Michel Desnos

Albert Hagège

Nicole Karam, Eloi Marijon, Etienne Puymirat, Elisabeth Riant

The Funding Sources

